Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38293069

RESUMEN

Background: The protocols and therapeutic guidance established for treating traumatic brain injuries (TBI) in neurointensive care focus on managing cerebral blood flow (CBF) and brain tissue oxygenation based on pressure signals. The decision support process relies on assumed relationships between cerebral perfusion pressure (CPP) and blood flow, pressure-flow relationships (PFRs), and shares this framework of assumptions with mathematical intracranial hemodynamic models. These foundational assumptions are difficult to verify, and their violation can impact clinical decision-making and model validity. Method: A hypothesis- and model-driven method for verifying and understanding the foundational intracranial hemodynamic PFRs is developed and applied to a novel multi-modality monitoring dataset. Results: Model analysis of joint observations of CPP and CBF validates the standard PFR when autoregulatory processes are impaired as well as unmodelable cases dominated by autoregulation. However, it also identifies a dynamical regime -or behavior pattern- where the PFR assumptions are wrong in a precise, data-inferable way due to negative CPP-CBF coordination over long timescales. This regime is of both clinical and research interest: its dynamics are modelable under modified assumptions while its causal direction and mechanistic pathway remain unclear. Conclusions: Motivated by the understanding of mathematical physiology, the validity of the standard PFR can be assessed a) directly by analyzing pressure reactivity and mean flow indices (PRx and Mx) or b) indirectly through the relationship between CBF and other clinical observables. This approach could potentially help personalize TBI care by considering intracranial pressure and CPP in relation to other data, particularly CBF. The analysis suggests a threshold using clinical indices of autoregulation jointly generalizes independently set indicators to assess CA functionality. These results support the use of increasingly data-rich environments to develop more robust hybrid physiological-machine learning models.

2.
J Biomed Inform ; 148: 104547, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37984547

RESUMEN

OBJECTIVE: Computing phenotypes that provide high-fidelity, time-dependent characterizations and yield personalized interpretations is challenging, especially given the complexity of physiological and healthcare systems and clinical data quality. This paper develops a methodological pipeline to estimate unmeasured physiological parameters and produce high-fidelity, personalized phenotypes anchored to physiological mechanics from electronic health record (EHR). METHODS: A methodological phenotyping pipeline is developed that computes new phenotypes defined with unmeasurable computational biomarkers quantifying specific physiological properties in real time. Working within the inverse problem framework, this pipeline is applied to the glucose-insulin system for ICU patients using data assimilation to estimate an established mathematical physiological model with stochastic optimization. This produces physiological model parameter vectors of clinically unmeasured endocrine properties, here insulin secretion, clearance, and resistance, estimated for individual patient. These physiological parameter vectors are used as inputs to unsupervised machine learning methods to produce phenotypic labels and discrete physiological phenotypes. These phenotypes are inherently interpretable because they are based on parametric physiological descriptors. To establish potential clinical utility, the computed phenotypes are evaluated with external EHR data for consistency and reliability and with clinician face validation. RESULTS: The phenotype computation was performed on a cohort of 109 ICU patients who received no or short-acting insulin therapy, rendering continuous and discrete physiological phenotypes as specific computational biomarkers of unmeasured insulin secretion, clearance, and resistance on time windows of three days. Six, six, and five discrete phenotypes were found in the first, middle, and last three-day periods of ICU stays, respectively. Computed phenotypic labels were predictive with an average accuracy of 89%. External validation of discrete phenotypes showed coherence and consistency in clinically observable differences based on laboratory measurements and ICD 9/10 codes and clinical concordance from face validity. A particularly clinically impactful parameter, insulin secretion, had a concordance accuracy of 83%±27%. CONCLUSION: The new physiological phenotypes computed with individual patient ICU data and defined by estimates of mechanistic model parameters have high physiological fidelity, are continuous, time-specific, personalized, interpretable, and predictive. This methodology is generalizable to other clinical and physiological settings and opens the door for discovering deeper physiological information to personalize medical care.


Asunto(s)
Algoritmos , Registros Electrónicos de Salud , Humanos , Reproducibilidad de los Resultados , Fenotipo , Biomarcadores , Unidades de Cuidados Intensivos
3.
medRxiv ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37662404

RESUMEN

Objective: Computing phenotypes that provide high-fidelity, time-dependent characterizations and yield personalized interpretations is challenging, especially given the complexity of physiological and healthcare systems and clinical data quality. This paper develops a methodological pipeline to estimate unmeasured physiological parameters and produce high-fidelity, personalized phenotypes anchored to physiological mechanics from electronic health record (EHR). Methods: A methodological phenotyping pipeline is developed that computes new phenotypes defined with unmeasurable computational biomarkers quantifying specific physiological properties in real time. Working within the inverse problem framework, this pipeline is applied to the glucose-insulin system for ICU patients using data assimilation to estimate an established mathematical physiological model with stochastic optimization. This produces physiological model parameter vectors of clinically unmeasured endocrine properties, here insulin secretion, clearance, and resistance, estimated for individual patient. These physiological parameter vectors are used as inputs to unsupervised machine learning methods to produce phenotypic labels and discrete physiological phenotypes. These phenotypes are inherently interpretable because they are based on parametric physiological descriptors. To establish potential clinical utility, the computed phenotypes are evaluated with external EHR data for consistency and reliability and with clinician face validation. Results: The phenotype computation was performed on a cohort of 109 ICU patients who received no or short-acting insulin therapy, rendering continuous and discrete physiological phenotypes as specific computational biomarkers of unmeasured insulin secretion, clearance, and resistance on time windows of three days. Six, six, and five discrete phenotypes were found in the first, middle, and last three-day periods of ICU stays, respectively. Computed phenotypic labels were predictive with an average accuracy of 89%. External validation of discrete phenotypes showed coherence and consistency in clinically observable differences based on laboratory measurements and ICD 9/10 codes and clinical concordance from face validity. A particularly clinically impactful parameter, insulin secretion, had a concordance accuracy of 83% ± 27%. Conclusion: The new physiological phenotypes computed with individual patient ICU data and defined by estimates of mechanistic model parameters have high physiological fidelity, are continuous, time-specific, personalized, interpretable, and predictive. This methodology is generalizable to other clinical and physiological settings and opens the door for discovering deeper physiological information to personalize medical care.

4.
J Biomed Inform ; 137: 104275, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572279

RESUMEN

Mechanical ventilation is an essential tool in the management of Acute Respiratory Distress Syndrome (ARDS), but it exposes patients to the risk of ventilator-induced lung injury (VILI). The human lung-ventilator system (LVS) involves the interaction of complex anatomy with a mechanical apparatus, which limits the ability of process-based models to provide individualized clinical support. This work proposes a hypothesis-driven strategy for LVS modeling in which robust personalization is achieved using a pre-defined parameter basis in a non-physiological model. Model inversion, here via windowed data assimilation, forges observed waveforms into interpretable parameter values that characterize the data rather than quantifying physiological processes. Accurate, model-based inference on human-ventilator data indicates model flexibility and utility over a variety of breath types, including those from dyssynchronous LVSs. Estimated parameters generate static characterizations of the data that are 50%-70% more accurate than breath-wise single-compartment model estimates. They also retain sufficient information to distinguish between the types of breath they represent. However, the fidelity and interpretability of model characterizations are tied to parameter definitions and model resolution. These additional factors must be considered in conjunction with the objectives of specific applications, such as identifying and tracking the development of human VILI.


Asunto(s)
Síndrome de Dificultad Respiratoria , Lesión Pulmonar Inducida por Ventilación Mecánica , Humanos , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/etiología , Ventiladores Mecánicos , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Pulmón
5.
medRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168309

RESUMEN

Mechanically ventilated patients generate waveform data that corresponds to patient interaction with unnatural forcing. This breath information includes both patient and apparatus sources, imbuing data with broad heterogeneity resulting from ventilator settings, patient efforts, patient-ventilator dyssynchronies, injuries, and other clinical therapies. Lung-protective ventilator settings outlined in respiratory care protocols lack personalization, and the connections between clinical outcomes and injuries resulting from mechanical ventilation remain poorly understood. Intra- and inter-patient heterogeneity and the volume of data comprising lung-ventilator system (LVS) observations limit broader and longer-time analysis of such systems. This work presents a computational pipeline for resolving LVS systems by tracking the evolution of data-conditioned model parameters and ventilator information. For individuals, the method presents LVS trajectory in a manageable way through low-dimensional representation of phenotypic breath waveforms. More general phenotypes across patients are also developed by aggregating patient-personalized estimates with additional normalization. The effectiveness of this process is demonstrated through application to multi-day observational series of 35 patients, which reveals the complexity of changes in the LVS over time. Considerable variations in breath behavior independent of the ventilator are revealed, suggesting the need to incorporate care factors such as patient sedation and posture in future analysis. The pipeline also identifies structural similarity in pressure-volume (pV) loop characterizations at the cohort level. The design invites active learning to incorporate clinical practitioner expertise into various methodological stages and algorithm choices.

6.
J Am Med Inform Assoc ; 28(11): 2354-2365, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33973011

RESUMEN

OBJECTIVE: To rapidly develop, validate, and implement a novel real-time mortality score for the COVID-19 pandemic that improves upon sequential organ failure assessment (SOFA) for decision support for a Crisis Standards of Care team. MATERIALS AND METHODS: We developed, verified, and deployed a stacked generalization model to predict mortality using data available in the electronic health record (EHR) by combining 5 previously validated scores and additional novel variables reported to be associated with COVID-19-specific mortality. We verified the model with prospectively collected data from 12 hospitals in Colorado between March 2020 and July 2020. We compared the area under the receiver operator curve (AUROC) for the new model to the SOFA score and the Charlson Comorbidity Index. RESULTS: The prospective cohort included 27 296 encounters, of which 1358 (5.0%) were positive for SARS-CoV-2, 4494 (16.5%) required intensive care unit care, 1480 (5.4%) required mechanical ventilation, and 717 (2.6%) ended in death. The Charlson Comorbidity Index and SOFA scores predicted mortality with an AUROC of 0.72 and 0.90, respectively. Our novel score predicted mortality with AUROC 0.94. In the subset of patients with COVID-19, the stacked model predicted mortality with AUROC 0.90, whereas SOFA had AUROC of 0.85. DISCUSSION: Stacked regression allows a flexible, updatable, live-implementable, ethically defensible predictive analytics tool for decision support that begins with validated models and includes only novel information that improves prediction. CONCLUSION: We developed and validated an accurate in-hospital mortality prediction score in a live EHR for automatic and continuous calculation using a novel model that improved upon SOFA.


Asunto(s)
COVID-19 , Pandemias , Estudios de Cohortes , Registros Electrónicos de Salud , Mortalidad Hospitalaria , Humanos , Estudios Prospectivos , Estudios Retrospectivos , SARS-CoV-2
7.
JMIR Med Inform ; 9(3): e23215, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33749613

RESUMEN

BACKGROUND: The clinical mitigation of intracranial hypertension due to traumatic brain injury requires timely knowledge of intracranial pressure to avoid secondary injury or death. Noninvasive intracranial pressure (nICP) estimation that operates sufficiently fast at multihour timescales and requires only common patient measurements is a desirable tool for clinical decision support and improving traumatic brain injury patient outcomes. However, existing model-based nICP estimation methods may be too slow or require data that are not easily obtained. OBJECTIVE: This work considers short- and real-time nICP estimation at multihour timescales based on arterial blood pressure (ABP) to better inform the ongoing development of practical models with commonly available data. METHODS: We assess and analyze the effects of two distinct pathways of model development, either by increasing physiological integration using a simple pressure estimation model, or by increasing physiological fidelity using a more complex model. Comparison of the model approaches is performed using a set of quantitative model validation criteria over hour-scale times applied to model nICP estimates in relation to observed ICP. RESULTS: The simple fully coupled estimation scheme based on windowed regression outperforms a more complex nICP model with prescribed intracranial inflow when pulsatile ABP inflow conditions are provided. We also show that the simple estimation data requirements can be reduced to 1-minute averaged ABP summary data under generic waveform representation. CONCLUSIONS: Stronger performance of the simple bidirectional model indicates that feedback between the systemic vascular network and nICP estimation scheme is crucial for modeling over long intervals. However, simple model reduction to ABP-only dependence limits its utility in cases involving other brain injuries such as ischemic stroke and subarachnoid hemorrhage. Additional methodologies and considerations needed to overcome these limitations are illustrated and discussed.

9.
medRxiv ; 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33469601

RESUMEN

BACKGROUND: The SARS-CoV-2 virus has infected millions of people, overwhelming critical care resources in some regions. Many plans for rationing critical care resources during crises are based on the Sequential Organ Failure Assessment (SOFA) score. The COVID-19 pandemic created an emergent need to develop and validate a novel electronic health record (EHR)-computable tool to predict mortality. RESEARCH QUESTIONS: To rapidly develop, validate, and implement a novel real-time mortality score for the COVID-19 pandemic that improves upon SOFA. STUDY DESIGN AND METHODS: We conducted a prospective cohort study of a regional health system with 12 hospitals in Colorado between March 2020 and July 2020. All patients >14 years old hospitalized during the study period without a do not resuscitate order were included. Patients were stratified by the diagnosis of COVID-19. From this cohort, we developed and validated a model using stacked generalization to predict mortality using data widely available in the EHR by combining five previously validated scores and additional novel variables reported to be associated with COVID-19-specific mortality. We compared the area under the receiver operator curve (AUROC) for the new model to the SOFA score and the Charlson Comorbidity Index. RESULTS: We prospectively analyzed 27,296 encounters, of which 1,358 (5.0%) were positive for SARS-CoV-2, 4,494 (16.5%) included intensive care unit (ICU)-level care, 1,480 (5.4%) included invasive mechanical ventilation, and 717 (2.6%) ended in death. The Charlson Comorbidity Index and SOFA scores predicted overall mortality with an AUROC of 0.72 and 0.90, respectively. Our novel score predicted overall mortality with AUROC 0.94. In the subset of patients with COVID-19, we predicted mortality with AUROC 0.90, whereas SOFA had AUROC of 0.85. INTERPRETATION: We developed and validated an accurate, in-hospital mortality prediction score in a live EHR for automatic and continuous calculation using a novel model, that improved upon SOFA. TAKE HOME POINTS: Study Question: Can we improve upon the SOFA score for real-time mortality prediction during the COVID-19 pandemic by leveraging electronic health record (EHR) data?Results: We rapidly developed and implemented a novel yet SOFA-anchored mortality model across 12 hospitals and conducted a prospective cohort study of 27,296 adult hospitalizations, 1,358 (5.0%) of which were positive for SARS-CoV-2. The Charlson Comorbidity Index and SOFA scores predicted all-cause mortality with AUROCs of 0.72 and 0.90, respectively. Our novel score predicted mortality with AUROC 0.94.Interpretation: A novel EHR-based mortality score can be rapidly implemented to better predict patient outcomes during an evolving pandemic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...